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Abstract. Itemset share has been proposed as a measure of the importance of 
itemsets for mining association rules. The value of the itemset share can provide 
useful information such as total profit or total customer purchased quantity 
associated with an itemset in database. The discovery of share-frequent itemsets 
does not have the downward closure property. Existing algorithms for 
discovering share-frequent itemsets are inefficient or do not find all 
share-frequent itemsets. Therefore, this study proposes a novel Fast Share 
Measure (FSM) algorithm to efficiently generate all share-frequent itemsets. 
Instead of the downward closure property, FSM satisfies the level closure 
property. Simulation results reveal that the performance of the FSM algorithm is 
superior to the ZSP algorithm two to three orders of magnitude between 0.2% 
and 2% minimum share thresholds.  

1   Introduction 

Recent developments in information science have a surprisingly rapid accumulation of 
data. Accordingly, efficiently managing massive bodies of data, rapidly discovering 
useful information, and making effective decisions based on data are crucial [10]. 
Newly developed data mining or knowledge discovery techniques have made routine 
the once impossible task of gathering hidden but potentially useful information from 
data in a large database or in a data warehouse. Such techniques have been widely 
applied in numerous areas, and have come to represent an important field of research.  
     Mining association rules is the main task of various data mining techniques. 
Agrawal et al. first introduced the problem, and developed an Apriori algorithm to 
generate all significant association rules for the retail organization in the context of bar 
code data analysis [2, 3]. The mining of association rules includes two-step process (1) 
finding all frequent itemsets, and (2) using these frequent itemsets to derive the 
association rules. Restated, the corresponding association rules can be 
straightforwardly derived from the frequent itemsets. Therefore, the first step is critical 
in mining associations. As the amount of data increase, the design of efficient algorithm 
becomes increasingly urgent. Various methods have been proposed to speed up the 
mining process, such as Apriori and subsequent Apriori-like algorithms [2, 3, 7, 8, 16] 
and pattern-growth methods [1, 11, 12, 15, 17].  
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    Given a database of customer transactions, the goal of data analysis is to discover the 
buying patterns of customers. Such information hints that how to group the products in 
store layout or product packets to promote these goods. Each product is regarded as an 
item. An itemset is a group of items bought together in a transaction. The support value 
of an itemsets is the typical measure to address the importance of an itemset in a 
transaction database [2]. An itemset is referred as frequent itemsets when the 
occurrence count of the itemsets in a database is above a threshold value. However, the 
support measure only considers the number of transactions in which the itemset was 
purchased. The exact purchased number of products is not analyzed. Therefore, the 
support count method does not measure in terms of the profit or cost of an itemset. In 
1997, Carter et al. presented a share-confidence framework to provide useful 
information about numerical values associated with transaction items and addressed the 
problem of mining characterized association rules from itemsets [9]. Recently, several 
searches about share measure have been proposed to efficiently extract share-frequent 
(SH-frequent) itemsets with infrequent subsets [4, 5, 6, 13, 14].  
    An SH-frequent itemset usually includes some infrequent subsets. Consequently, the 
downward closure property cannot be applied to discover all share-frequent itemsets. 
Existing algorithms are either inefficient or do not discover complete share-frequent 
itemsets. Accordingly, this study proposes an efficient Fast Share Measure (FSM) 
algorithm to discover all SH-Frequent itemset. Instead of the downward closure 
property, FSM employs the level closure property to rapidly reduce the number of 
candidate itemsets. The inequality of level closure property guarantees all supersets of 
the pruned itemsets must be infrequent. This study focuses on the technique to discover 
all SH-frequent itemsets efficiently.  
    The rest of this paper is organized as follows. Section 2 introduces the review of 
support-confidence and share-confidence frameworks. Section 3 explains the level 
closure property and the proposed fast share measure (FSM) algorithm. FSM applies 
the level closure property to efficiently prune useless candidates. Section 4 provides 
experimental results and evaluates the performance of the proposed algorithm. Finally, 
we conclude in Section 5 with a summary of our work.  

2   Reviews of Support and Share Measures 

2.1   The Support-Confidence Framework 

In 1993, Agrawal et al. first presented a model to define the problem of mining 
association rules [2, 3]. Given a transaction database, the mining of association rules is 
to discover the important rules that apply to items. Let I = {i1, i2, …, im} be a set of 
literals, called items. Let X be a set of items X ⊆ I, which is called an itemset. Let DB = 
{T1, T2, ..., Tn} be the transaction database, where each transaction T∈ DB, T ⊆ I, 
1 ≤ q ≤ n. Each transaction is associated with a unique identifier, called TID. An itemset 
X is contained in T if and only if X ⊆ T. An association rule is an implication of the form 

X ⇒ Y, where X ⊆ I, Y ⊆ I and X ∩ Y= φ  (For example, I={ABCDE}, X={AE}, 

Y={BD}). An association rule X⇒ Y has two characteristic values, called support and 
confidence. The support of an itemset X, denoted as support(X), is the percentage of 
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transactions in DB containing X. If the itemset X∪ Y appears in s% transactions of DB, 

the support of the rule X⇒ Y is s%. This is taken to be the probability, Pr(X∪ Y). The 
rule X⇒ Y has confidence c% in DB if c% is the percentage of transactions in DB 
containing X that also contain Y. This is taken to the conditional probability, Pr(Y|X). 
The mathematical expression of confidence is confidence(X ⇒ Y) = 
support(X∪ Y)/support(X). The problem of mining association rules is to discover all 
rules whose support and confidence satisfy the user-specified minimum support 
(minSup) and minimum confidence (minConf) requirements, respectively. An itemset 
is called a frequent itemset when its support is greater than or equal to the minSup 
threshold.  
    Given a user-specified minSup, Apriori employs the characteristic of the downward 
closure to discover the frequent itemsets by filtering some infrequent itemsets 
beforehand. The downward closure property is that any subset of a frequent itemset 
must be frequent; otherwise the itemset is infrequent. The process makes multiple 
passes over the database. In each pass, Apriori collects a candidate set of frequent 
itemsets. The algorithm scans the entire transaction database to count the number of the 
occurrences of each candidate k-itemset (which is an itemset with k items), and then 
determines the frequent itemsets. Candidate k-itemsets are established from two 
arbitrary frequent (k-1)-itemsets, whose first k - 2 items are identical. If k ≥  3, Apriori 
applies the downward closure property to reduce the number of candidates. The process 
is repeated until no candidate can be generated. 

Example 2.1. Consider the example database with eight transactions in Table 1 and the 
minimum support threshold is 36%. Let Ck be the set of candidate k-itemsets and Fk be 
the set of frequent k-itemsets. In the first pass, Apriori scans the database to count the 
support value of each item of C1. In Figure 1, four 1-itemsets {B}, {C}, {D} and {E} 
satisfy the minimum support requirement and are added to F1. Then, each frequent 
1-itemset joins with each other to form C2. In the second pass, Apriori scan the database 
second time to examine which itemsets of C2 are frequent. C3 is generated from F2 as 
follows. Figure 1 displays two frequent itemsets of F2 with the same first item, such as 
{BC} and {BD}. Then, Apriori checks the 2-itemset {CD}, which is a subset of {BCD} 
to determine whether {CD} is frequent. If {CD} is not frequent, then {BCD} must be 
infrequent. Since {CD} is in F2, all the subsets of {BCD} are frequent. Hence, {BCD} 
is a candidate 3-itemset. The algorithm stops when no candidate 4-itemset can be 
generated from F3. In each pass, Apriori scans the database once. Consequently, 
Apriori scans the database k times.  

2.2   The Share-Confidence Framework 

In 1997, Hilderman et al. first introduced the share-confidence framework, which is an 
alternative measure of the importance of itemsets [9]. The local measure value of an 
itemset X is the total count of each distinct item in the itemset in each transaction, which 
contains X. The share value is of an itemset X is known as the ratio of the local measure 
value to the total measure value in DB. Each item has a numerical attribute in each 
transaction. The value of the numerical attribute of an item ip in a transaction Tq is 
called the transaction measure value, denoted as tmv(ip, Tq). For Table 1 example, 
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tmv(F, T02) = 4. The type of the numerical attribute can be an integer type, such as the 
purchased quantity of customers in a transaction, or a real type such as profit margin, 
unit cost, or total revenue. The other notations and definitions of share measure are 
described as follows [6].  

Table 1. Example of a transaction database with counting 

TID Transaction Count 
T01 {A, B, C, D, E, G, H} {1, 1, 1, 1, 1, 1, 1} 
T02 {F, H} {4, 3} 
T03 {B, C, D} {4, 3, 3} 
T04 {C, E} {4, 1} 
T05 {B, D} {3, 2} 
T06 {B, C, D} {3, 2, 1} 
T07 {B, C, D, E} {3, 4, 1, 2} 
T08 {A, F, G} {4, 1, 1} 

 

Pass 1    C1 Support  F1 Support 
    {A} 2  {B} 5 
   Scan DB {B} 5  {C} 5 
   ==> {C} 5 ==> {D} 5 
    {D} 5  {E} 3 
    {E} 3    
    {F} 2    
    {G} 2    
    {H} 2    
         
Pass 2 C2   C2 Support  F2 Support 
 {BC}   {BC} 4  {BC} 4 
F1 ∞ F1 {BD}  Scan DB {BD} 5  {BD} 5 
==> {BE}  ==> {BE} 2 ==> {CD} 4 
 {CD}   {CD} 4    
 {CE}   {CE} 3    
 {DE}   {DE} 2    
Pass 3         
F2 ∞ F2 & Prune C3  Scan DB C3 Support  F3 Support 
==> {BCD}  ==> {BCD} 4 ==> {BCD} 4 

Fig. 1. Application of Apriori algorithm 

Definition 2.1. Each k-itemset X ⊆ I has an associated transaction set dbX = {Tq∈DB | 
X ⊆ Tq}. In other words, dbX is a set of transactions containing itemset X. 

Definition 2.2. The global measure value gmv(ip) of an item ip is the sum of tmv(ip, Tq), 
where Tq∈DB. In other words, gmv(ip) = ∑

∈DBT
qp

q

Titmv ),( .  
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Definition 2.3. The total measure value TMV of all items is the sum of the global 

measure value of each item ip. In other words, TMV = ∑
=

m

p
pigmv

1
)( , where m is the 

number of all distinct items.  

Definition 2.4. The local measure value lmv(ip, X) of an item ip in an itemset X is the 
sum of the transaction measure values of the item ip in all transactions that contain X. In 
other words, lmv(ip, X) = ∑

∈ xq dbT
qp Titmv ),( . Similarly, the local measure value lmv(X) of 

an itemset X is the sum of the local measure values of each item ip in X. In other words 
lmv(X) = ∑

∈Xi
p

p

Xilmv ),( . 

Definition 2.5. The item share of an item ip in X, denoted as SH(ip, X), is the ratio of the 
local measure value of ip to the total measure value. In other words, SH(ip, X) = 

TMV

Xilmv p ),(
. Similarly, the itemset share of an itemset X, denoted as SH(X), is the ratio 

of the local measure value of X to the total measure value. In other words, SH(X) = 

TMV

Xlmv )(
.  

Definition 2.6. A k-itemset X is share-frequent (SH-frequent) if SH(X) is greater than a 
pre-defined minimum threshold (minShare) s%.  

Example 2.2. Consider the same transaction database as in Table 1 with a minimum 
share threshold of 36%. As shown in Table1, the column Count lists the corresponding 
count of each item in a transaction. The global measure value and the item share of each 
item are listed in Table 2, where TMV = 56. The local measure value of {B} in the 
itemset {B, C, D} is lmv(B, {BCD}) = 1 + 4 + 3 + 3 = 11. SH({BCD}) = 
lmv({BCD})/TMV = (lmv(B, {BCD})+ lmv(C, {BCD})+ lmv(D, {BCD}))/56. Then, 
SH({BCD}) = (11 + 10 + 6) /56 = 0.482 > 36%. Therefore, {B, C, D} is SH-frequent. 
Table 3 enumerates all SH-frequent itemsets.  

Table 2. Occurrence count (global measure value) and itemset share of each 1-itemset 

Item A B C D E F G H Total 
gmv(ip) 5 14 14 8 4 5 2 4 56 
SH(ip) 8.9% 25% 25% 14.3% 7.1% 8.9% 3.6% 7.1% 100% 

Table 3. All SH-frequent itemsets of the sample database 

SH-frequent itemset BC BD BCD 
lmv(X) 21 22 27 
SH(X) 37.5% 39.3% 48.2% 
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3   Fast Share Measure (FSM) Algorithm 

The Apriori-like algorithms employ the downward closure property to discover 
efficiently frequent itemsets based on the support measure. All (k-1)-itemsets of a 
candidate k-itemset are frequent itemsets, otherwise, the k-itemset can be pruned. 
Therefore, the characteristic of downward closure can be used to reduce the number of 
candidates and speed up the process. However, an SH-frequent itemset could include 
some infrequent subsets. It does not satisfy the downward closure property. Obviously, 
the exhaustive search method can find all SH-frequent itemsets, but has an exponential 
running time. Barber and Hamilton presented the ZP (zero pruning) algorithm and the 
ZSP (zero subset pruning) algorithm to improve the performance [6]. However, the two 
algorithms only prune the candidate itemsets whose local measure values are exactly 
zero. There is no efficient algorithm to discover all SH-frequent itemsets up to now. 
Consequently, this study develops a fast share measure (FSM) algorithm to find all 
SH-frequent itemsets efficiently.  

3.1   Level Closure Property 

The notations and definitions of FSM are described as follows. 

Definition 3.1. The maximum length of all transactions in DB is denoted as ML. That is, 
ML = max(|Tq| | Tq∈DB). 

Definition 3.2. Let MV be the maximum transaction measure value of all items in DB. 
That is, MV = max(tmv(ip, Tq) | ip∈Tq, and Tq∈DB). 

Definition 3.3. Let X be an itemset, which is a subset of X’, the local measure value of X 
on X’, denoted as lmv(X, X’), is the sum of the local measure values of each item ip in X’ 
in DB, where ip in X. That is, lmv(X, X’) = ∑

∈Xi
p

p

Xilmv )',( .  

    If X = X’, then lmv(X, X’) = lmv(X). The local measure values of itemsets have some 
characteristics, which are described as follows. 

Lemma 3.1. Let X, X’ and X’’ be itemsets, where X ⊆  X’ ⊆  X’’, then 
(1) lmv(X, X’’) ≤  lmv(X’, X’’). Especially, when X’ = X’’, lmv(X, X’) ≤  lmv(X’). 
(2) lmv(X, X’) ≥  lmv(X, X’’). Especially, when X = X’, lmv(X) ≥  lmv(X, X’’). 

Proof. 
(1) Since X ⊆  X’, for arbitrary item ip in X, ip is also in X’.  lmv(X, X’’) = 

∑
∈Xi

p
p

Xilmv )'',( ≤ ∑
∈ '

)'',(
Xi

p
p

Xilmv  = lmv(X’, X’’). 

(2) Since X’ ⊆  X’’, dbX’  ⊇  dbX’’. For arbitrary item ip in X, lmv(ip, X’) ≥ lmv(ip, X’’). 
Therefore, lmv(X, X’) ≥  lmv(X, X’’).  Q.E.D 

Lemma 3.2. Let X be a k-itemset, then |dbX| × k ≤ lmv(X) ≤ |dbX|× k ×MV. 
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Proof. By Definition 2.4, lmv(X) = ∑
∈Xi

p
p

Xilmv ),(  = ∑∑
∈∈ xqp dbT

qp
Xi

Titmv ),( . For each 

item ip and transaction Tq, 1 ≤  tmv(ip, Tq) ≤  MV. Therefore, |dbX| ×  k ≤ lmv(X) ≤ 
|dbX|× k ×  MV.  Q.E.D 

Theorem 3.1. Given a minShare and a k-itemset X, if lmv(X) + (lmv(X)/k)× MV < 
minShare× TMV, all supersets of X with length k + 1 are infrequent. 

Proof. For arbitrary superset X’ of X with length k + 1, says X’ = X ∪  {ip}. By 
Definition 3.3, lmv(X’) = lmv(X’, X’) = lmv(X, X’) + lmv(ip, X’). First, by Lemma 3.1, 
we have lmv(X, X’) ≤ lmv(X). Second, by Lemma 3.2 on X’, lmv(ip, X’) ≤ |dbX’|× MV. 
Since dbX’ is a subset of dbX, |dbX’| ≤ |dbX|. So, lmv(ip, X’) ≤ |dbX|× MV ≤ (lmv(X) 
/k) × MV, by Lemma 3.1 on X. Now, we have lmv(X’) ≤ lmv(X) + (lmv(X) /k)× MV. If 
the inequality lmv(X) + (lmv(X)/k) × MV < minShare × TMV holds, lmv(X’) < 
minShare × TMV. That is, SH(X’) = lmv(X’)/TMV< minShare. X’ is infrequent. 
Theorem is proofed. Q.E.D 

Theorem 3.2. Given a minShare, a k-itemset X and a positive integer k’, if lmv(X) + 
(lmv(X)/k)× MV× k’ < minShare× TMV, all supersets of X with length less than or 
equal to k + k’ are infrequent. 

Proof. Let X’ be an arbitrary superset of X with length k + i, where 1 ≤ i ≤ k’. Let Y = 
X’ – X. Clearly, the size of Y is i. With the same argument in Theorem 3.1, we have  

(1) lmv(X’) = lmv(X’, X’) = lmv(X, X’) + lmv(Y, X’).  
(2) lmv(X, X’) ≤  lmv(X).  
(3) lmv(Y, X’) ≤  |dbX’|×  i × MV ≤ (lmv(X)/k)× MV × i ≤ (lmv(X)/k)× MV× k’.  

So, lmv(X’) ≤ lmv(X) + (lmv(X)/k) × MV × k’. If the inequality lmv(X) + 
(lmv(X)/k)× MV × k’ < minShare × TMV holds, lmv(X’) < minShare × TMV. That is, 
SH(X’) = lmv(X’) / TMV < minShare. X’ is infrequent.  Q.E.D 

Corollary 3.1. Given a minShare and a k-itemset X, if lmv(X) + (lmv(X)/k)× MV×  
(ML - k) < minShare× TMV, all supersets of X are infrequent. 

Proof. Since the maximum length of all transactions in DB is ML, lmv(X’) = 0 for any 
superpset X’ of X with length greater than ML. Definitely, X’ is infrequent. For arbitrary 
superset X’ of X with length less than or equal to ML, if the inequality lmv(X) + 
(lmv(X)/k)× MV × (ML - k) < minShare× TMV holds, by Theorem 3.2, X’ is infrequent. 
Corollary is proofed.  Q.E.D 

Definition 3.4. The characteristic of Theorem 3.1, Theorem 3.2 and Corollary 3.1 is 
called the level closure property. For a given integer k’, let CF be a critical function, 
defined as CF(X) = lmv(X) + (lmv(X)/k)× MV× L, where L = min{ML-k, k’}. 

Theorem 3.2 guarantees if CF(X) < minShare × TMV holds, no superset of X with 
length ≤ k + k’ is SH-frequent. The level closure property can be applied to prune 
candidates whose supersets are not SH-frequent with length ≤ k + k’, but it cannot 
ensure the SH-frequency of the supersets with length greater than k + k’. Accordingly, 
Corollary 3.1 modifies the level closure property of Theorem 3.2 and assures that all 
supersets of X are not SH-frequent if CF(X) < minShare× TMV. 
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3.2   Fast Share Measure (FSM) Algorithm 

The FSM algorithm is a level-wise and a multiple passes algorithm. In the k-th pass, let 
Ck be the candidate set, RCk be the remainder candidates after checking the critical 
function CF, and Fk be the SH-frequent set. Like Apriori, each single item is a 
candidate. In the first pass, FSM scans the database to count the local measure value of 
each item. Each candidate 1-itemset X is pruned when CF(X) < minShare× TMV. In 
next each pass, FSM joins arbitrary two candidates in RCk-1, whose first k-2 items are 
identical. The k subsets with length (k - 1) of each k-itemset in Ck are in RCk-1; otherwise 
the k-itemset can be pruned. After Ck is produced, delete the RCk-1. Next, for each 
itemset X in Ck, if the itemset share lmv(X)/TMV is higher than minShare, X is added to 
Fk; if CF(X) is greater than minShare, the superset of X could be SH-frequesnt, so X is 
added to RCk. The process is repeated until no candidate can be generated. 
     The pseudo code of FSM is described as follows. 

Algorithm. FSM(k’) 

Input: (1) DB: a transaction database with counts, (2) minShare: minimum share 
threshold, and (3) k’: the parameter of critical function (Definition 3.4) 

Output: All SH-frequent itemsets 

Procedure: 
1. k:=1; F1:=φ ; C1:=I; 
2. foreach T∈DB { // scan DB 
3.  count the local measure value of each item; } 
4. foreach ip∈C1 { 
5.  if lmv(ip) ≥ minShare×TMV {  
6.   F1:= F1+ip; } 
7.  elseif CF(ip)<minShare×TMV { 
8.   C1:= C1-ip; }  
9. } 
10. RC1:=C1;  
11. for k:=2 to h { 
12.  foreach Xp, Xq ∈RCk-1 { 
13.   Ck :=Apriori-join(Xp, Xq); } 
14.  foreach T∈DB { // scan DB 
15.   count each candidate’s local measure value; } 
16.  foreach X∈Ck { 
17.   if lmv(X)≥ minShare×TMV {  
18.    Fk:= Fk+X; } 
19.   elseif CF(X)<minShare×TMV { 
20.    Ck:= Ck-X; } } 
21.  RCk:= Ck;  
22. } 
23. return F  
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4   Experimental Results 

The performance of FSM was compared with that of ZSP using a 1.5GHz Pentium IV 
PC with 1GB of main memory, running Windows XP Professional. All algorithms 
were coded using Visual C++ 6.0, and applied to process the synthetic dataset. The 
whole SH-frequent itemsets were output to main memory to reduce the effect of disk 
writing.  
    The IBM synthetic dataset was generated using a synthetic data generator [18].  The 
VC++ version of the data generator was obtained from [19]. Table 4 lists the 
parameters of the synthetic data generation program.  

Table 4. Parameters 

x Mean size of the transactions 
y Mean size of the maximal potentially frequent itemsets
z Number of transactions in DB 
n Number of items 

    The notation Tx.Iy.Dz.Nn denotes a dataset with given parameters x, y, z and n. 
To simulate the characteristic of the count in each item in each transaction, the 
count of each item in each transaction is randomly generated between 1 to m,      
with the proportion of 1 equal 50%. The notation of the dataset becomes 
Tx.Iy.Dz.Nn.Sm. 
    Figures 2 plots the performance curves associated with the two algorithms applied to 
T4.I2.D100k.N50.S10. The x-axis represents the several distinct minShare thresholds 
between 0.2% and 2%, and the y-axis represents the running time. Note that Fig. 2 uses 
a logarithmic scale for y-axis. FSM(1), FSM(2), FSM(3) and FSM(ML-1) are special 
cases of the FSM algorithm with different parameter k’, respectively. The lower 
minShare threshold results in the longer running time of FSM. In the low minShare 
(0.2%) scenario, FSM(ML-1) outperforms the ZSP algorithm two orders of magnitude. 
Contract to the high minShare (2%) scenario, FSM(ML – 1) outperforms ZSP more 
than three orders of magnitude. FSM(ML – 1) always outperforms ZSP and discovers 
all SH-frequent itemsets. In Fig. 2, FSM(1) is always the fastest. Although it could loss 
some SH-frequent itemsets while the parameter k’ of FSM is set less than ML – 1, the 
output set of SH-frequent itemsets is identical with that of ZSP using 
T4.I2.D100k.N50.S10 with minShare = 0.8% as listed in Table 5. The number of Ck, 
RCk and Fk and the total running time of ZSP and FSM algorithms are also listed in 
Table 5. ZSP only prunes the itemsets with SH(X) = 0. Therefore, ZSP terminates the 
process at pass ML. The value of ML of T4.I2.D100k.N50.S10 is 14. Contrast to 
FSM(1), FSM(2), FSM(3) and FSM(ML-1), their processes terminate at pass 5, 6, 6 and 
6, respectively. In a very low minShare (0.005%) scenario, FSM(1), FSM(2) and 
FSM(3) lose some SH-frequent itemsets using the dataset. In the scenario, FSM(ML - 1) 
discovers all SH-frequent itemset. 
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Fig. 2. Comparison of running time using T4.I2.D100k.N50.S10 

Table 5. Comparison of the number of candidate set and SH-frequent set (Fk) in each pass using 
T4.I2.D100k.N50.S10 with minShare = 0.8% (ML=14) 

        Method 
Pass (k) 

ZSP FSM(1) FSM(2) FSM(3) FSM(ML-1) 

Ck 50 50 50 50 50 
RCk 50 49 49 49 50 k=1 
Fk 32 32 32 32 32 
Ck 1225 1176 1176 1176 1225 
RCk 1219 570 754 845 1085 k=2 
Fk 119 119 119 119 119 
Ck 19327 4256 7062 8865 14886 
RCk 17217 868 1685 2410 5951 k=3 
Fk 65 65 65 65 65 
Ck 165077 1725 3233 5568 24243 
RCk 107397 232 644 1236 6117 k=4 
Fk 9 9 9 9 9 
Ck 406374 81 258 717 6309 
RCk 266776 5 40 109 1199 k=5 
Fk 0 0 0 0 0 
Ck 369341 0 1 4 287 
RCk 310096 0 0 0 37 k=6 
Fk 0 0 0 0 0 
Ck 365975 0 0 0 0 
RCk 359471 0 0 0 0 k ≥ 7 
Fk 0 0 0 0 0 

Time(sec) 10349.9 2.30 2.98 3.31 11.24 

    Figure 3 presents the scalability with the number of transactions of DB. The x-axis 
represents the several distinct DB sizes between 100k and 1000k, and the y-axis 
represents the running time. Figure 3 uses a logarithmic scale for y-axis. Consider 
minShare = 0.8%, the running time linearly increases with the growth of the DB size. 
The running time of ZSP exceeds 105 seconds when |DB| ≥ 600k.  
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Fig. 3. Scalability with the transaction number of DB 

5   Conclusions 

Data mining techniques have been applied extensively across many areas, and data 
mining has become an important research field. Mining frequent itemsets in a 
transaction database plays an important role for mining association rules. Itemset share 
has been proposed to measure the importance of itemsets for mining association rules. 
Developing an efficient approach for discovering complete SH-frequent itemsets is 
very useful in solving numerous mining problems. However, share-frequent itemsets 
do not satisfy the downward closure property. To solve the problem and develop an 
efficient method for fast generating all SH-frequent itemsets, this study proposes the 
level closure property. The inequality of level closure property guarantees all supersets 
of the pruned itemsets must be infrequent. Consequently, the developed FSM algorithm, 
which implements the level closure property, can efficiently decrease the number of 
itemsets to be counted. Experiments indicate that FSM outperforms ZSP several orders 
of magnitude. In the future, the authors will consider the development of superior 
algorithms to improve the performance of discovering all SH-frequent itemsets. 
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